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Summary. A binomial-like model is developed that 
may be used in genetic linkage studies when data are 
generated by a testcross with parental phase unknown. 
Four methods of estimation for the recombination 
frequency are compared for data from a single group 
and also from several groups; these methods are 
maximum likelihood, two Bayesian procedures, and an 
ad hoc technique. The Bayes estimator using a nonin- 
formative prior usually has a lower mean squared error 
than the other estimators and because of this it is the 
recommended estimator. This estimator appears parti- 
cularly useful for estimation of recombination frequen- 
cies indicative of  weak linkage from samples of 
moderate size. Interval estimates corresponding to this 
estimator can be obtained numerically by discretizing 
the posterior distribution, thereby providing researchers 
with a range of plausible recombination values. Data 
from a linkage study on pitch pine are used as an 
example. 
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Introduction 

A large literature spanning over 50 years exists in 
statistical genetics on detection and estimation of 
linkage in situations where parental information is 
incomplete. Prominent early work includes Fisher 
(1935), Haldane and Smith (1947), Morton (1955), and 
Smith (1959); Bailey (1961) provides a useful summary. 
Likelihood techniques have become the predominant 
methodology although Bayesian methods also find 
some use in practice. In recent years, research efforts 

have largely focused on refining likelihood procedures 
for linkage testing (Smith and Sturt 1976; Rao et al. 
1978). 

Linkage analysis in plant and animal genetics has focused 
on controlled breeding experiments in which parental phase is 
known (Tanksley and Rick 1980; Goodman etal. 1980). 
However, situations exist where breeding work is impractical 
because of long generation times and/or high cost, and 
estimates of recombination frequency typically are obtained 
from studies in which parental phase is unknown. This 
situation is common, for example, in forest genetics (Rudin 
and Ekberg 1978; Adams and Joly 1980; O'Malley and Guries 
1981). 

Genetic linkage studies reflecting a common mating 
type (test-cross, parental phase unknown) make use of  
the binomial-like model described by the following 
probability function: 

(k) [ok (1- 0)n-k + 0n-k (1-0)  k] 
for 0_-< k < n / 2  

P{kln,0}= 2 - k l  (n) [ 0 k ( 1 - 0 ) n - k + 0 n - k ( 1 - 0 ) k ]  (1) 

for k = n/2 

where n is the sample size (e.g., number of gametes), k 
is the number of observations in the smaller class 
(coupling or repulsion), and 0 is the recombination 
frequency, restricted to lie between 0 and 0.5. The 
genes are said to be unlinked i f0  =0.5; i f0 < 0.5, the 
genes are linked with linkage considered tighter as 0 
becomes smaller. In (1) the term 0k(1--0) n-k is from 
the standard binomial, whereas the term 0n-k(1--0) k is 
due to the restrictions that 0 lie between 0 and 0.5, and 
that k is the number of  observations in the smaller class 
(but not necessarily the number of recombinants). 
Equation (1) can be viewed as a "folded binomial" to 
describe these restrictions. I f0  is close to 0.5, there is a 
non-negligible probability that the number of recombi- 
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nants will exceed n/2.  The restrictions noted lead to a 
"folding" about  n /2  of  the distribution for the number  
of  recombinants  so that the occurrences of  k recom- 
binants and n - k recombinants  have the same probabi-  
lity. 

Analytical study of (1) has received little recent attention. 
Human geneticists primarily apply likelihood methods with 
some attention devoted to Bayesian approaches. Forest 
geneticists generally have avoided formal use of (1) and have 
estimated 0 with the binomial estimator k/n (Rudin and 
Ekberg 1978; Adams and Joly 1980). The purpose of this 
paper is to examine the estimation of 0 from (1). In par- 
ticular, several methods of estimation for a single group or 
family as well as for several groups or thmilies are compared. 

Two assumptions are made  in the analysis pres- 
ented here. The first assumption is that there is no 
linkage disequilibrium. Strong disequilibria have been 
noted in selfing plants (Allard 1975), and among  tightly 
linked loci in maize (Brown and Allard 1971), but such 
associations seem to be u n c o m m o n  in outbreeding 
species, including forest trees. Detection of  dis- 
equilibrium often requires large sample sizes (Brown 
1975), which might explain the limited number  of  
observations on this phenomenon  in natural  popula-  
tions. The second assumption is absence of  ascertain- 
ment  bias. Failure to incorporate such bias where 
appropriate  will lead to negligible errors in estimation 
for modera te  to large samples (eg., n > 20). 

Estimation of  O from a single group 

Four methods of  estimation for 0 in model  (1) are 
considered. These are m a x i m u m  likelihood, a Bayes 
procedure with a noninformative prior, a Bayes proce- 
dure with a spike of  prior probabil i ty placed at 0 = 0.5, 
and an ad hoc "natura l"  procedure.  These methods are 
described briefly and then compared  numerically. 
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Fig. I. L(0] n, k) versus 0for n =25, k = 10 

Denote the likelihood by L(0ln, k) which is ex- 
pressed as LOIn ,  k) o(0k(1 --0)n-k+0 n-k (1--0) g. The 
max imum likelihood estimator, 0"1, is that value of 0 
which maximizes L(01 n, k); in general, this value must 
be found numerically. The max imum value of  the 
likelihood can occur at 0 = 0.5 even if k is less than n/2. 
When L(0[n ,k)  is plotted versus 0 for n - -25  and 
k =  10, the peak occurs at 8=0 .5  (Fig. 1); with n = 2 5  
the peak also occurs a t 0 = 0 . 5  if k =  11 or k =  12. 

Bayesian estimation makes  use of  L(0[n, k) in a 
different manner.  L(01 n, k) is modified by a prior 
probabili ty on 0 and results in a posterior probabil i ty 
for 0. The Bayes estimator is the mean  (average value) 
for 0 from the posterior distribution. 

The first Bayes estimator, G2, is the posterior mean  
assuming a (non-informative) uniform prior distribu- 
tion (Jeffreys 1961). This estimator is given by: 

0.5 0.5 

02= ~ O L ( S l n ,  k) dO/ ~ L (8 ] n, k) dO 
0 0 

k + l  

n + 2  

n -  q - -  
n 

I0. 5 (k+2 ,  n - k + l )  

k + l  
+ 2  I0.5 ( n - k + 2 ,  k + l )  

where Ix (a, b) is the incomplete beta function as 
defined by eqn. (26.5.1) in Abramowitz  and Stegun 
(1972). Because x=0 .5  and a, b are integer-valued, 02 
can be computed exactly by use of  the relation between 
the incomplete beta and binomial  distributions (Abra- 
mowitz and Stegun 1972 - 26.5.24). 

Bayesian methods were advocated by Smith (1959) 
primarily for use in testing Ho:0=0 .5 .  It has been 
traditional to use a prior distribution with a spike of  
probability, t ,  at 8=0 .5  and uniform density on 0-< 
0 < 0.5 such that the total probabil i ty on 0 =< 0 < 0.5 
is l-ft. In large part  the spike reflects the high prob- 
ability that a pair of  loci are unlinked due to their 
occurrence on distinct chromosomes.  The value of  fl 
depends on the number  of  chromosome pairs in the 
organism under study. The Bayes estimator, 0"3, is the 
posterior mean  assuming this spiked prior. This 
estimator is written 

[ 0, j /  
03 = f l O . 5 ~ + 2 ( 1 - f l )  I OL(OIn ,  k) dO 

o 

f l 0 " 5 n - l + 2 ( 1 - f l )  I L ( 0 l n ,  k) d0 . 
0 

The fourth estimator can be viewed as a "natural"  
estimator for a model with the binomial-like structure of  
(1). This ad hoc estimator is written 0"4=k/n. Use of 
0"4 has been made in some studies of  genetic linkage in 
conifers (Rudin and Ekberg 1978). Adams and Joly 
(1980) make use of  this estimator but apply it only if a 
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prior test for detection of linkage leads to a conclusion 
that linkage is present. 

In order to compare these four estimators, the bias 
and mean squared error (MSE) were computed for 50 
values of 0 ranging from 0.01 to 0.50 in increments of 
0.01 with n =  10, 25, and 100. (The MSE of an estimator 
is the square of  the bias of the estimator plus the 
variance of the estimator. The MSE serves as the 
principal criterion for comparing estimators.) The 
values of n considered are representative of sample 
sizes of interest in practice, particularly to forest 
geneticists. 

Equation (1) was used to determine the probability 
of each possible value of k for each combination of 0 
and n. For each k, estimates for 0 were calculated for 
each estimation method. For each method, the esti- 
mates were averaged, weighting each estimate by the 
probability of observing the value of k leading to the 
estimate, and the bias and MSE were computed. The 
value of t ,  the prior probability that 0 = 0.5, used for 0"~ 
was 0.94; this value was chosen as typical for many 
coniferous tree species but the nature of conclusions is 
not strongly dependent on the specific selected value. 
The results for bias and MSE for 0"1, ~ ,  and 0"4 are 
displayed in Fig. 2 with MSE results comparing 02 and 
0"3 shown in Fig. 3. The bias results for 0"3 are not 
displayed as tittle useful information would be added. 

In the case of the usual binomial problem, the 
estimator k /n  is unbiased. However, for the folded 
binomial, the "natural" estimator 0"4 is unbiased only 
for those values of 0 where the folding has no real 
effect; i.e., those values of 0 for which 0 n-k (1 -0 )  k is 
much smaller than 0 k (1 - 0 )  n-k. There is an increase in 
the negative bias of 0", as folding becomes more 
important. Also, the value of 0 when folding begins to 
have effect increases as n becomes larger. 

The maximum likelihood estimator 0"1 has bias 
similar to that of 0", for small 0. The bias becomes 
positive for intermediate 0 and becomes negative for 0 
close to 0.5. With intermediate values of 0, there is a 
non-negligible probability that the estimator value is 0.5 
(Fig. 1); this causes positive bias. The bias for 0"1 is 
negative for 0 close to 0.5 due to the boundary at 
0 =0.5. The groupings small 0, intermediate 0, and 0 
close to 0.5 change with changing n, according to the 
effect of folding. 

The Bayes estimator with noninformative prior, 0"2, 
tends to shrink extreme estimates towards the middle, 
thus resulting in positive bias for small 0 and negative 
bias for large 0. The Bayes estimator with spiked prior, 
~ ,  has large positive bias (not shown) for most values of 
0 below 0.5 due to the spike. The maximum values of 
this bias are 0.23 (at 0=0.14), 0.14 (at 0=0.28), and 
0.073 (at 0---0.39) for n--- 10, 25, and 100, respectively. 

The MSE values for estimators 0"1, if2, and 0"4 
manifest surprisingly variable behavior (Fig. 2b). As 
noted above, k /n  is an unbiased estimator in the case 
of the standard binomial problem. Thus, the MSE of 
this estimator is equal to its variance and is given by 
0 (1-0) /n .  For those values of 0 with inconsequential 
folding, 0"4 ("natural") follows the same pattern. The 
MSE for 0-4 has smaller value as folding becomes 
important, due to substantially decreased estimator 
variability. The MSE increases sharply due to the bias 
as 0 approaches 0.5, and equals 0 ( 1 - 0 ) / n  when 
0 =0.5. For small 0, 0-x (maximum likelihood) has MSE 
similar to that of 0-4. The MSE increases due to the 
positive bias as folding becomes important. The MSE 
for 0-1 is below the peak value when 0 is close to 0.5, 
because the probability that 0"1 equals 0.5 is substantial. 

The Bayes estimator with noninformative prior, 0"2, 
has a larger MSE than that for 0"1 and 0", at very small 
0 and again for 0 close to 0.5 due to substantial bias. 
However, for a broad range of intermediate 0, the MSE 
for 0"2 is considerably less than that for the others, due 
largely to the shrinkage effect noted above. Estimator 
0"3 (Bayes with spike prior) has large MSE values 
corresponding to the large biases resulting from the 
spike. For larger n, the MSE values for 0-2 and 0"3 are 
identical for small 0; however, as 0 becomes large 
enough so that the prior dominates the likelihood, the 
MSE for 0-a becomes considerably larger. The MSE for 
0-3 is very small for 0 very close to 0.5, due to the spike 
(Fig. 3). 

An interval estimate for 0 can be obtained utilizing 
highest posterior density regions as discussed in Box 
and Tiao (1973). This "Bayes confidence interval" 
corresponds well with estimator 0"2. Such interval 
estimates are obtained numerically by discretizing the 
posterior distribution of 0. 

Est imat ion of  0 for several groups 

Consider several (T) independent groups with common 
0, each distributed according to (1). The likelihood is 
written 

L (0) - L (0 I ni,  ki,  i = 1 . . . . .  T) 
T 

O( 1-[ [ 0ki (1 --  0)  n i -  k, + 0hi - ki (1 --  0)  k'] (2)  
i=l  

with 0 _-< 0 _~ 0.5; k i integer-valued so that 0 ~ k i ~ ni/2. 
The same four methods of estimation are consid- 

ered. The maximum likelihood estimator 01 is that 
value of 0 which maximizes L (0). The Bayes estimator 
with noninformative prior is written 

0.5 0.5 

02= ~ OL(O) dO/~ L(O) dO. 
o 0 
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This can be expressed as the ratio of  sums of  incom- 
plete beta functions where these latter functions can be 
evaluated exactly, as indicated previously. The Bayes 
estimator with spike prior is written [ 0, ]/ 
63 = f l 0 - 5 Y - T + l + 2 ( 1 - - f l )  S O L ( 0 )  d0 

0 
{ O.5 ] 

f10.5 N-T + 2 ( 1 -  fl) I L(0)  dO 
0 

Fig. 2. Bias and mean squared error 
versus 0 for ~, 02, 04; single group 
case 

T 

where N = ~ n I. The "natural" estimator is written 
i=l 

64= ~ k i n i. Note that 04 is equivalent to the 
)=1 T 

estimator obtained for a single family with K = ~ k i 
T i=l  

and N = ~ ni. 
i=l 
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Fig. 3. Mean squared error versus 0 for ~, 4 ;  single group 
case 

To compare estimators, the bias and MSE were 
computed for the 4-group situation (T=4) .  The 
balanced sample case with n i = 1 0  and n i=25  was 
considered. The bias and MSE for 0"1, if2, and 0"4 are 
plotted versus 0 (Fig. 4). Many of  the same patterns 
noted for the single family situation are evident here. 
However, for the "natural" estimator if4, the bias 

becomes negative more rapidly than for other esti- 
mators due to the inefficient manner  with which G4 
incorporates folding. Similarly the MSE is relatively 
large for 0 close to 0.5 due to this bias. The difficulties 
with this estimator are compounded  when there are 
more groups. The results for 03 (Bayes with spike prior, 
not shown) compare with those for 0"2 in the same way 
as in the single group case. 

Comparing the 4-group n i=25  case to the single 
group n =  100 situation, note that the bias and MSE 
values for 61 and 62 are similar. The magnitudes are 
somewhat greater in the 4-group case for 0 close to 0.5. 
These two estimators appear  to incorporate the effects 
of  folding quite efficiently. 

Example from Pinus rigida (Mill.) 

To demonstrate the applicability o f  these procedures, 
consider data from a genetic linkage study of  pitch pine 
(Pinus rigida Mill.). In this study linkage between 
certain enzyme loci was examined using haploid mega- 
gametophytes from open-pollinated seed of  single-tree 
collections. Three pairs o f  loci for which double hetero- 
zygotes were available are considered (Table 1); we 
arbitrarily designate by A or a and B or b the 
alternative allelic forms for e/tch locus. By simultane- 

Table 1. Data from pitch pine linkage study 

Enzyme Accession No. of megagametophytes 
loci no. per class 

AB Ab aB ab n k 

ACO : AAT-1 CC438 9 7 10 8 34 17 
CC389 14 7 11 8 40 18 
HE54 9 12 12 7 40 16 
BRD131 7 8 10 14 39 18 
MX95 12 16 9 8 45 20 

G6PD : PGM-1 WPA22 5 17 10 9 41 14 
WPA7 14 7 10 13 44 17 
EP49 11 15 13 6 45 17 
CC430 10 8 19 7 44 17 

PGI-1 : 6PGD-2 CC388 9 33 33 15 90 24 
EP148 14 7 7 12 40 14 

E.C. nomenclature for these enzymes: 

Enzyme Name Abbreviation 

aconitase ACO 
aspartate aminotransferase AAT-1 
glucose-6-phosphate G6PD 
dehydrogenase 
phosphoglucomutase PGM- 1 
phosphoglucose isomerase PGI-1 
6-phosphogluconic 6PGD-2 
dehydrogenase 

E.C. Designation 
3.1.3.2 
2.6.1.1 
1.1.1.49 

2.7.5.1 
5.3.1.9 
1.1.1.44 
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Fig.4. Bias and mean squared error versus 0 
for 01,02,0, ; four group case 

ously staining for two enzymes on slices from the same 
gel (Guries et al. 1978), data can be obtained on the 
number of gametes that fall into each of the four 
categories AB, Ab, aB, and ab. The numbers k and n 
are given by 

k = m i n  ( m A B  + m a b  , m A b  + m a B  ) 

n = mAB + m A b  + m a B  + m a b  

where, for example, mAB is the number of  gametes in 
category AB. (Note: the notation used for enzyme loci 
follows from Guries et al. 1978). 

The four estimation methods were applied to the 
data from each individual tree and to the grouped data 
for each pair of  loci. Estimates of  0 together with 95% 
"Bayes confidence intervals" and the posterior probabi- 
lity that 0=0.5 assuming the spike prior are shown in 
Table 2. All values are accurate to three decimal places. 
The interval estimates for the grouped data are ob- 
tained in the same manner as those for the single 
groups. 

The strong effect of the spike prior causes G3 to 
behave in a qualitatively different fashion from the 

other estimators. However, for several individual trees 
(CC438, CC389, BRD131, MX95, and CC388), and the 
combined data for the first and third gene pairs 
(ACO :AAT-1 and PGI-1 : 6PGD-2, respectively), 0"3 is 
similar to the other estimators. For the individual tree 
(exempting HE54) and grouped data from ACO:AAT-1, 
all estimates indicate that little or no linkage exists. 
For tree CC388 and the grouped data from PGI-I :  
6PGD-2, the likelihood dominates the spike prior 
and all estimates are comparable. In this regard note 
the low posterior probability that 0 = 0.5. 

Estimators 0"1, 02, and 0"4 show more uniformity 
when 0 is well below 0.5 than when 0 is close to 0.5. 
For tree CC438, where k = n / 2 ,  0"2 (Bayes with non- 
informative prior) equals 0.434 demonstrating the 
shrinkage due to the prior. It is interesting to compare 
the differences between 0"1 (maximum likelihood) 
and 0"~ for trees WPA22, EP148, EP49, WPA7 (CC430), 
and HE54. Whereas both estimators increase monoton- 
ically, 0"1 increases faster; 0"1 changes from 0.342 to 
0.410 whereas 0"~ goes from 0.348 to 0.397. This 
behavior demonstrates the differing responses of these 
estimators to folding. With the grouped data the 
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Table 2. Estimates of 0 from four methods 

319 

(maximum (Bayes-non- (Bayes-spike 
likelihood) informative prior) 

prior) 

tJ4 95 % "Bayes Posterior 
("natural") confidence probability that 

interval" 0 = 0.5 (given 
/7=0.94) 

CC438 0.500 0.434 0.499 
CC389 0.500 0.427 0.499 
HE54 0.410 0.397 0.497 
BRD 131 0.500 0.431 0.499 
MX95 0.500 0.427 0.499 

ACO : AAT-1 0.500 0.462 0.500 

WPA22 0.342 0.348 0.487 
WPA7 0.389 0.387 0.496 
EP49 0.379 0.380 0.495 
CC430 0.389 0.387 0.496 

G6PD : PGM-1 0.375 0.380 0.479 

CC388 0.267 0.272 0.273 
EP 148 0.350 0.355 0.490 

PGI-I : 6PGD-2 0.292 0.296 0.296 

0.500 [0.339, 0.500] 0.987 
0.450 [0.327, 0.500] 0.985 
0.400 [0.284, 0.500] 0.973 
0.462 [0.334, 0.500] 0.986 
0.444 [0.329, 0.500] 0.985 

0.449 [0.408, 0.500] 0.992 

0.341 [0.227, 0.492] 0.913 
0.386 [0.276, 0.500] 0.965 
0.378 [0.270, 0.500] 0.958 
0.386 [0.276, 0.500] 0.965 

0.374 [0.301, 0.461] 0.821 

0.267 [0.183, 0.363] 0.005 
0.350 [0.240, 0.500] 0.931 

0.292 [0.219, 0.374] 0.003 

similarity of  estimate values (0"1, if2, and 0",) for 
G6PD : PGM-1 and particularly PGI-1 : 6PGD-2 is not 
surprising given the relatively large sample sizes. 

Discussion 

Both likelihood and Bayesian methods (assuming a 
spike prior) have been used for detection of  linkage 
(Morton 1955; Smith 1959). A lively debate  among  
adherents o f  both points of  view has continued to the 
present. A procedure utilizing the spike (i.e., using if3) 
does not seem desirable for estimation of  recombina-  
tion frequency due to the substantial effect the prior 
can have on bias and mean  squared error (MSE). The 
spike prior is mot ivated by the knowledge that a high 
proportion, fl, of  all pairs of  loci will be unlinked 
largely because the probabili t ies are high that they fall 
on different chromosomes.  However,  when estimating 
the recombinat ion frequency for a particular gene pair, 
it appears  quite undesirable to impose  the influence of  
such a powerful prior on the est imation procedure.  The 
strength of  this effect is demonst ra ted  by the single tree 
and grouped data results for G6PD : PGM-1 (Table 2). 

Traditionally, estimation of  0 has involved maxi-  
m u m  likelihood (i.e., 01) as the r ecommended  proce- 
dure. We advocate a role for g2, the Bayesian estimator 
with noninformative prior. This estimator, as noted in 
previous sections, has substantially smaller MSE for a 
wide range of  intermediate  0 values. Additionally, this 
estimator has associated with it a readily computed  

interval estimator, the highest posterior density region. 
The results o f  our est imator comparisons  (Figs. 2 and 4) 
indicate that 0"2 has a relatively large bias for 0 near  0 
and also near  0.5. However,  the general superiority of  02 
(ie., smaller MSE) is due to a substantially reduced vari- 
ance that more  than compensates  for the increased bias. 
The major  difficulty with ffl (max imum likelihood) is 
that this est imator yields rather  high values when k is 
near  n /2  and equals 0.5 for a range of  k. This behavior  
leads to a larger est imator variance, and hence MSE, 
particularly for intermediate 0. The est imator G2 avoids 
this difficulty. 

Some mild cautionary comments  should be offered 
on the use of  G2. First, it appears  impor tan t  to avoid 
performing a test for H 0 : 0 = 0 . 5  on the basis of  in- 
clusion of  0.5 in a 95% "Bayes confidence interval".  In 
making conclusions about  the existence of  linkage, it 
appears  appropriate  to take into account the large prior 
probabil i ty that loci are unlinked due to the number  of  
chromosomes.  However,  if a 99.9% interval were 
computed,  the corresponding test would provide similar 
results to the lod (log odds) score, or z score procedure,  
based on the Morton (1955) likelihood methods.  
Second, the one region for which 0~2 has undesirable 
behavior  (i.e., relatively large MSE) is for (true) 0 very 
close to 0.5; the shrinking effect o f  the prior keeps the 
estimate values below 0.5. Note again the results for 
tree CC438 (Table 2). However,  this concern appears  
quite minor,  for if  the given interval estimate includes 
0=0.5 ,  then even a testing procedure using the interval 
cannot rule out the hypothesis of  unlinked loci. In such 
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a case there appears  little point  in providing an 
estimate of  0 other  than to conclude that the loci are 
unlinked.  For  (true) 0 close to 0.5, detect ion of  l inkage 
and good est imation will require large sample  sizes 
regardless o f  specific methodology.  

Although likelihood and Bayesian procedures have 
received predominant attention, forest geneticists have made 
use of estimators like 04 (Rudin and Ekberg 1978). This 
method works well when the numbers of gametes in the two 
observed categories (coupling and repulsion) are quite dis- 
parate and it appears safe to identify the category with the 
smaller number as recombinant. However, there are problems 
with the procedure when the categories have comparable 
numbers of gametes and the certainty of correct identification 
of the recombinant category diminishes. These difficulties are 
enhanced when there are several groups as indicated by the 
relatively large MSE values for large 0. 

As noted earlier, most linkage work in plant and animal 
genetics has assumed known parental phase. Biochemical 
methods have made it possible to survey genetic variation at 
many loci, but the characterization and mapping of such genes 
can entail considerable experimental effort. Detailed genetic 
maps have been constructed using allozyme data for several 
well-studied plants and animals (McMillin and Scandalios 1981; 
Treat-Clemons and Doane 1982). Most organisms for which 
such maps exist have relatively short life cycles, a low 
chromosome number, and/or other features which facilitate 
controlled breeding experiments from which data for such 
maps are derived. However, due to high cost or long genera- 
tion times, breeding for such purposes is impractical in 
organisms such as forest trees and linkage testing is limited to 
gene combinations revealed in surveys of natural populations 
or seed orchards (Guries et al. 1978; Conkle 1981). This latter 
application requires estimation of recombination frequency 
assuming unknown phase; thus it is useful to determine to 
what extent estimator precision differs from the phase known 
case. 

The testcross model reduces to a standard binomial with 
usual estimator k/n when parental phase is known. Neglecting 
those exceedingly rare situation when the true recombination 
frequency, 0, can be larger than 0.5 (pseudolinkage, Wright 
et al. 1980), an estimation procedure requiring the estimator to 
lie within the interval [0, 0.5] is obtained by the replacement of 
k/n by 0.5 whenever k/n > 0.5. This estimator, defined as 00, 
can be written 00 = minimum (k/n, 0.5). 

Comparisons of  efficiency of  different models  for 
estimating recombinat ion  frequency are often made  
using the concept of  information (Allard 1956). Such an 
approach does not appear  feasible in the current 
situation due to violation of  boundary  condit ions at 
0=0 .5  (Rao 1973). A comparison based on est imator 
mean squared error, with calculations performed in the 
same manner  as before, was employed.  Using G2 (Bayes 
with noninformative prior) as the best es t imator  for the 
phase unknown situation, this comparison of  MSE 
values was made for the same single group and multi-  
group cases as before. (In the mult i -group case define 

O0 by O0 -- min imum 2 k i / / 2  ni ,0.5 . The single 
\ i = l  / i = l  

group results with n = 2 5  and the four group results 
with n i =  10 for each group typify the overall  pat tern 
(Fig. 5). For  reference, the s tandard binomial  MSE, 

( 0 (1 -0)/i__~ 1 e) 0 ( 1 - 0 ) / n ,  ni for the mul t igroup cas 

is also displayed and denoted as fib- 
There is little difference between the estimators for 

small 0 because there is no uncertainty about  the 
recombinants  in the phase unknown situation; the 
small difference is due to shrinkage effects of  f2. The 
MSE for f2 is smaller  than that for Oo for in termediate  
0, because the shrinkage propert ies  dominate  the effects 
of  known phase; for 0 close to 0.5, O0 achieves smaller  
MSE values than 62. 

Overall  there appears  no loss in terms of  MSE in 
estimation of  0 utilizing the phase unknown model.  
Virtually nothing is gained by knowledge o f  parenta l  
gene arrangement.  The results o f  this compar ison  might 
differ somewhat  i f  an al ternative est imator  for O0 
(Bayesian counterpart)  were chosen. However,  the 
general conclusion remains valid. 

The principal  area for appl icat ion of  62 is l ikely to 
be survey work as in the pitch pine al lozyme study. In 
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such studies modes t  sample sizes (as typified by 
Table 1) are avai lable  for a large number  of  pairs  of  
loci. Analysis o f  da ta  such as the combined  data  on 
G 6 P D : P G M - 1  can benefit  most  from use o f  this 
estimator;  it is for in termedia te  values o f  0 where the 
reduction in MSE for 0"2 is the largest (Fig. 4). Al- 
though the evidence that the loci are l inked cannot  be 
viewed as conclusive - note for instance that  the 
posterior  probabi l i ty  assuming a spike pr ior  for 0 = 0.5 
is 0.821 - a s tronger case for l inkage can clearly be 
made  for this pair  o f  loci than for ACO :AAT-1.  The 
fact that this poster ior  probabi l i ty  value of  0.821 is 
below the pr ior  value of  0.94 indicates that  the likeli- 
hood curve is shifted away from 0=0.5 .  The upper  
limit o f  0.461 for the interval  est imate for G 6 P D :  
PGM-1 should be viewed cautiously as impl ied  above. 
However,  the lower l imit  of  0.301 can serve as a conser- 
vative lower bound  for the recombina t ion  frequency. 

There appears  no singularly super ior  methodology  
for analysis of  l inkage da ta  with unknown phase.  
However,  with weak l inkage and modes t  sample  sizes, 
the es t imator  if2 has a smaller  MSE than other  
estimators. Al though we would r ecommend  against  
exclusive reliance on this estimator,  we feel that  it could 
be useful in many  studies. We would also like to 
provide a note of  caut ion about  the "na tura l"  es t imator  
~4. This est imator  performs relatively poor ly  (high 
MSE) in the several-group case for 0 values indicative 
of  weak l inkage and hence should p robab ly  not  be the 
est imator o f  choice. 
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